Characterization of antifreeze protein gene expression in summer spruce budworm larvae.
نویسندگان
چکیده
Not surprisingly, in the spruce budworm, Choristoneura fumiferana, antifreeze protein (AFP) gene expression is most abundant in the second instar, overwintering stage. However, low level RNA and protein expression was also found in the sixth instar larvae, a summer stage. In situ hybridization further confirmed the presence of AFP mRNA in sixth instar midgut tissues. Sequencing of cDNAs corresponding to "summer-expressed" transcripts revealed an isoform that was not apparent in a cDNA library made to second instar larvae. Although similar to AFP cDNAs obtained from overwintering larvae, this AFP-like isoform (CfAFP6) has two Cys substitutions. Since AFPs from this species fold into a beta-helix that is stabilized by disulfide bonds, it was of interest to determine if this summer-expressed isoform had AFP activity. No thermal hysteresis activity was found when CfAFP6 was cloned and expressed in E. coli, even after in vitro denaturation and refolding. As well, there was no activity detected when the sequence of a known, active isoform was changed to mimic the Cys substitutions in CfAFP6. Since CfAFP6 does not appear to contribute to freeze resistance, its apparent absence in the overwintering second instar should not in itself be considered curious.
منابع مشابه
Crystallization and preliminary X-ray crystallographic analysis of spruce budworm antifreeze protein.
Antifreeze proteins have the ability to bind to ice with high affinity and inhibit further crystal growth. The insect antifreeze protein from spruce budworm exhibits very high thermal hysteresis activity and is implicated in the protection of overwintering larvae from freezing. This protein has been crystallized in 20-25% polyethylene glycol (Mr 6000), 0.4 M NaCl, 0.1 M Tris-HCl, pH 8.5, by vap...
متن کاملSpruce budworm antifreeze protein: changes in structure and dynamics at low temperature.
Antifreeze proteins (AFPs) prevent the growth of ice, and are used by some organisms that live in sub-zero environments for protection against freezing. All AFPs are thought to function by an adsorption inhibition process. In order to elucidate the ice-binding mechanism, the structures of several AFPs have been determined, and have been shown to consist of different folds. Recently, the first s...
متن کاملComposition of the Spruce Budworm (Choristoneura fumiferana) Midgut Microbiota as Affected by Rearing Conditions
The eastern spruce budworm (Choristoneura fumiferana) is one of the most destructive forest insect pests in Canada. Little is known about its intestinal microbiota, which could play a role in digestion, immune protection, communication and/or development. The present study was designed to provide a first characterization of the effects of rearing conditions on the taxonomic diversity and struct...
متن کاملDevelopmental expression and stress induction of glutathione S-transferase in the spruce budworm, Choristoneura fumiferana.
Developmental and stress-induced expression of Choristoneura fumiferana glutathione S-transferase (CfGST) mRNA and protein were examined using Northern blots and Western blots. High levels of CfGST mRNA and protein were detected in 1st instar larvae and diapausing 2nd instar larvae. Expression of CfGST gradually decreased during larval development from 3rd to 5th instar, after which the express...
متن کاملCold survival in freeze-intolerant insects: the structure and function of beta-helical antifreeze proteins.
Antifreeze proteins (AFPs) designate a class of proteins that are able to bind to and inhibit the growth of macromolecular ice. These proteins have been characterized from a variety of organisms. Recently, the structures of AFPs from the spruce budworm (Choristoneura fumiferana) and the yellow mealworm (Tenebrio molitor) have been determined by NMR and X-ray crystallography. Despite nonhomologo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Insect biochemistry and molecular biology
دوره 36 3 شماره
صفحات -
تاریخ انتشار 2006